Vol. 77 No. 5 (2022)

Impact of ground-level ozone on Italian forests: application of innovative monitoring methodologies in the forest:

Jacopo Manzini
Istituto di Ricerca sugli Ecosistemi Terrestri (IRET), Consiglio Nazionale delle Ricerche (CNR), Via Madonna del Piano 10, 50019 Sesto Fiorentino, Italia. DAGRI, Università degli Studi di Firenze, Piazzale delle Cascine 18, 50144 Firenze, Italia.
Yasutomo Hoshika
Istituto di Ricerca sugli Ecosistemi Terrestri (IRET), Consiglio Nazionale delle Ricerche (CNR), Via Madonna del Piano 10, 50019 Sesto Fiorentino, Italia.
Barbara Baesso Moura
Istituto di Ricerca sugli Ecosistemi Terrestri (IRET), Consiglio Nazionale delle Ricerche (CNR), Via Madonna del Piano 10, 50019 Sesto Fiorentino, Italia.DAGRI, Università degli Studi di Firenze, Piazzale delle Cascine 18, 50144 Firenze, Italia.
Elena Paoletti
Istituto di Ricerca sugli Ecosistemi Terrestri (IRET), Consiglio Nazionale delle Ricerche (CNR), Via Madonna del Piano 10, 50019 Sesto Fiorentino, Italia.

Published 2022-12-02


  • Tropospheric ozone,
  • Forest monitoring,
  • Phytotoxic Ozone Dose,
  • Forest health indicators


Ground-level ozone (O3) is one of the main atmospheric pollutants and can cause serious damage to forest ecosystems due to its high phytotoxic effect. Therefore, O3 forest monitoring is crucial to study its harmful effect on vegetation and establish new critical levels for the forest protection. Results of the application of innovative active monitoring stations in the forest, installed as part of the European project LIFE MOTTLES (MONitoring ozone injury for seTTing new critical LEvelS) are shown. The experimental areas were selected within the CON.ECO.FOR network, where two different cumulative indices based on exposure to O3 in the atmosphere (AOT40) and on the stomatal flow of O3 (PODY) were estimated. These metrics were correlated with forest health indicators such as visible foliar injury and crown defoliation assessed both inside the plot (ITP) and along the forest edge (LESS), to derive exposure-based (CLec) and flow-based (CLef) critical levels. Results suggest CLec and CLef of 17,000 and 19,000 ppb h AOT40 and 12 and 5 mmol m-2 POD1, respectively, for coniferous and broadleaved species. Active monitoring system allows to assess and steadily updates critical levels and legislative standards for the forests protection. Moreover, an active monitoring system resulted also more sustainable from an environmental, economic and social point of view in the long period than a traditional passive one.


  1. Agathokleous E., Feng Z., Oksanen E., Sicard P., Wang Q., Saitanis C. J., Araminiene V., Blande J.D., Hayes F., Calatayud V., Domingos M., Veresoglou S.D., Peñuelas J., Wardle D.A., De Marco A., Li Z., Harmens H., Yuan X., Vitale M., Paoletti E., 2020 - Ozone affects plant, insect, and soil microbial communities: A threat to terrestrial ecosystems and biodiversity. Science Advances, 6 (33): 1-17. https://doi.org/10.1126/sciadv.abc1176
  2. Ainsworth E.A., Yendrek C.R., Sitch S., Collins W.J., Emberson L.D., 2012 - The effects of tropospheric ozone on net primary productivity and implications for climate change. Annual review of plant biology, 63 (1): 637-661. https://doi.org/10.1146/annurev-arplant-042110-103829
  3. Anav A., De Marco A., Proietti C., Alessandri A., Dell’Aquila A., Cionni I., Friedlingstein P., Khvorostyanov D., Menut L., Paoletti E., Sicard P., Sitch S., Vitale M., 2016 - Comparing concentration-based (AOT40) and stomatal uptake (PODY) metrics for ozone risk assessment to European forests. Global Change Biology, 22 (4): 1608-1627. https://doi.org/10.1111/gcb.13138
  4. Calatayud V., Cerveró J., Sanz M. J., 2007 - Foliar, Physiological and growth responses of four maple species exposed to ozone. Water Air and Soil Pollution, 185: 239-254. https://doi.org/10.1007/s11270-007-9446-5
  5. Carrari E., De Marco A., Laschi A., Badea O., Dalstein-Richier L., Fares S., Leca S., Marchi E., Sicard P., Popa I., Hoshika Y., Materassi A., Pallante G., Pitar D., Paoletti E., 2021 - Economic and Life Cycle Analysis of Passive and Active Monitoring of Ozone for Forest Protection. Environments, 8, 104. https://doi.org/10.3390/ environments8100104.
  6. CLRTAP, 2017 - Mapping Critical Levels for Vegetation, Chapter III of Manual on methodologies and criteria for modelling and mapping critical loads and levels and air pollution effects, risks and trends. UNECE Convention on Long-range Transboundary Air Pollution. A ccessed on 01st July 2022 on Web at www.icpmapping.org
  7. De Marco A., Sicard P., Vitale M., Carriero G., Renou C., Paoletti E., 2015 - Metrics of ozone risk assessment for Southern European forests: canopy moisture content as a potential plant response indicator. Atmospheric Environment, 120: 182-190. https://doi.org/ 10.1016/j.atmosenv.2015.08.071.
  8. European Council Directive 2008/50/EC of the European Parliament and of the council of 21st May 2008 on ambient air quality and cleaner air for Europe. Official Journal, L, 152 (2008): 1-44.
  9. Hoshika Y., Fares S., Savi F., Gruening C., Goded I., De Marco A., Sicard P., Paoletti E., 2017 - Stomatal conductance models for ozone risk assessment at canopy level in two Mediterranean evergreen forests. Agricultural and Forest Meteorology, 234: 212-221. https://doi.org/10.1016/j.agrformet.2017.01.005
  10. Hoshika Y., Carrari E., Mariotti B., Martini S., De Marco A., Sicard P., Paoletti E., 2020 - Flux-Based Ozone Risk Assessment for a Plant Injury Index (PII) in Three European Cool-Temperate Deciduous Tree Species. Forests, 11 (82): 1-12. https://doi.org/10.3390/f11010082
  11. Karmakar S.P., Das A.B., Gurung C., Ghosh C., 2022 - Effects of Ozone on Plant Health and Environment: A Mini Review.
  12. Li P., De Marco A., Feng Z., Anav A., Zhou D., Paoletti E., 2018 - Nationwide ground-level ozone measurements in China suggest serious risks to forests. Environmental Pollution, 237: 803-813. https://doi.org/10.1016/j.envpol.2017.11.002
  13. Lorenzini G., Nali C., Biagioni M., 1995 - Long range transport of photochemical ozone over the Tyrrhenian Sea demonstrated by a new miniaturized bioassay with ozone-sensitive tobacco seedlings. The Science of the Total Environment, 166: 193-199. https://doi.org/10.1016/0048-9697(95)04531-5
  14. Mills G., Pleijel H., Malley C.S., Sinha B., Cooper O.R., Schultz M.G., Neufeld H.S., Simpson D., Sharps S., Feng Z., Gerosa G., Harmens H., Kobayashi K., Saxena P., Paoletti E., Sinha V., Xu X., 2018 - Tropospheric Ozone Assessment Report: present-day tropospheric ozone distribution and trends relevant to vegetation. Elementa Science of the Anthropocene, 6. https://doi.org/10.1525/elementa.302
  15. Moura B.B., Alves E.S., Marabesi M.A., Ribeiro de Souza S., Schaub M., Vollenweider P., 2018 - Ozone affects leaf physiology and causes injury to foliage of native tree species from the tropical Atlantic Forest of southern Brazil. Science of Total Environment, 610-611: 912-925. https://doi.org/10.1016/j.scitotenv.2017.08.130
  16. Musselman R.C., Lefohn A.S., Massman W.J., Heath R.L., 2006 - A critical review and analysis of the use of exposure-and flux-based ozone indices for predicting vegetation effects. Atmospheric Environment, 40 (10): 1869-1888. https://doi.org/10.1016/j.atmosenv.2005.10.064
  17. Nunn A.J., Kozovits A.R., Reiter I.M., Heerdt C., Leuchner M., Lutz C., Liu X., Low M., Winkler J.B., 2005 - Comparison of ozone uptake and sensitivity between a phytotron study with young beech and a field experiment with adult beech (Fagus sylvatica). Environmental Pollution, 137: 494-506. https://doi.org/10.1016/j.envpol.2005.01.036
  18. Paoletti E., Petriccione B., Racalbuto S., 2005 - Elevate concentrazioni di ozono nell’Italia mediterranea: una sfida alle foreste? Forest@, 2 (1): 130-140. [online] URL: http://www.sisef.it/. https://doi.org/10.3832/efor0269-0020130
  19. Paoletti E., 2006 - Ozone impacts on Mediterranean forests: A review. Environmental Pollution, 144: 463-474. https://doi.org/10.1016/j.envpol.2005.12.051
  20. Paoletti E., 2007 - L’ozono ed i suoi effetti sulle foreste mediterranee. Forest@, 4 (4): 478-487. [online] URL: http://www.sisef.it/forest@/. https://doi.org/10.3832/efor0490-0040478
  21. Paoletti E., 2009 - Ozone and urban forests in Italy. Environmental pollution, 157 (5): 1506-1512. https://doi.org/10.1016/j.envpol.2008.09.019
  22. Paoletti E., Materassi A., Fasano G., Hoshika Y., Carriero G., Silaghi D., Badea O., 2017 - A new-generation 3D ozone FACE (Free Air Controlled Exposure). Science of the Total Environment, 575: 1407-1414. https://doi.org/10.1016/j.scitotenv.2016.09.217
  23. Paoletti E., Alivernini A., Anav A., Badea O., Carrari E., Chivulescu S., Conte A., Ciriani M.L., Dalstein-Richer L., De Marco A., Fares S., Fasano G., Giovannelli A., Lazzara M., Leca S., Materassi A., Moretti V., Pitar D., Popa I., Sabatini F., Salvati L., Sicard P., Sorgi T., Hoshika, Y., 2019 - Toward stomatal-flux based forest protection against ozone: The MOTTLES approach. Science of the Total Environment, 691: 516-527. https://doi.org/10.1016/j.scitotenv.2019.06.525
  24. Proietti C., Anav A., De Marco A., Sicard P., Vitale M., 2016 - A multi-sites analysis on the ozone effects on Gross Primary Production of European forests. Science of the total environment, 556: 1-11. https://doi.org/10.1016/j.scitotenv.2016.02.187
  25. Sacchelli S., Carrari E., Paoletti E., Anav A., Hoshika Y., Sicard P., Screpanti A., Chirici G., Cocozza C., De Marco A., 2021 - Economic impacts of ambient ozone pollution on wood production in Italy. Scientific reports, 11: 154. https://doi.org/10.1038/s41598-020-80516-6
  26. Saitanis C.J., Sicard P., De Marco A., Feng Z., Paoletti E., Agathokleous E., 2020 - On the atmospheric ozone monitoring methodologies. Current Opinion in Environmental Science & Health, 18: 40-46. https://doi.org/10.1016/j.coesh.2020.07.004
  27. Schaub M., Calatayud V., Ferretti M., Brunialti G., Lövblad G., Krause G., Sanz M.J., 2016 - Part VIII: Monitoring of Ozone Injury. In: UNECE ICP Forests Programme Coordinating Centre (ed) Manual on methods and criteria for harmonized sampling, assessment, monitoring and analysis of the effects of air pollution on forests. Eberswalde, Germany: Thünen Institute of Forest Ecosystems, 14 p. + annex.
  28. Sicard P., De Marco A., Troussier F., Renou C., Vas N., Paoletti E., 2013 - Decrease in surface ozone concentrations at Mediterranean remote sites and increase in the cities. Atmospheric Environment, 79: 705-715. https://doi.org/10.1016/j.atmosenv.2013.07.042
  29. Sicard P., De Marco A., Dalstein-Richier L., Tagliaferro F., Renou C., Paoletti, E., 2016 - An epidemiological assessment of stomatal ozone flux-based critical levels for visible ozone injury in Southern European forests. Science of the Total Environment, 541: 729-741. https://doi.org/10.1016/j.atmosenv.2013.07.042
  30. Sicard P., Anav A., De Marco A., Paoletti E., 2017- Projected global ground-level ozone impacts on vegetation under different emission and climate scenarios. Atmospheric Chemistry and Physics, 17: 12177-12196. https://doi.org/10.5194/acp-17-12177-2017
  31. Sicard P., De Marco A., Carrari E., Dalstein-Richier L., Hoshika Y., Badea O., Pitar D., Fares S., Conte A., Popa I., Paoletti E., 2020 - Epidemiological derivation of flux-based critical levels for visible ozone injury in European forests. Journal of Forestry Research, 31 (5): 1509-1519. https://doi.org/10.1007/s11676-020-01191-x
  32. Sicard P., Hoshika Y., Carrari E., De Marco A., Paoletti E., 2021 - Testing visible ozone injury within a Light Exposed Sampling Site as a proxy for ozone risk assessment for European forests. Journal of Forest Research, 32: 1351-1359. https://doi.org/10.1007/s11676-021-01327-7
  33. UNECE, United Nations Economic Commission for Europe, 2010 - Mapping critical levels for vegetation. Manual on Methodologies and Criteria for Modelling and Mapping Critical Loads & Levels and Air Pollution Effects, Risks and Trends, United Nations Economic Commission for Europe (UNECE) Convention on Long range Transboundary Air Pollution. Geneva, 254 p.
  34. Yasmen A.M., Sinan J.M., 2012 - Measurement of ground level ozone at different locations. American Journal of Environmental Sciences, 8 (3): 311. https://doi.org/10.3844/ajessp.2012.311.321