Published 2024-09-05
Keywords
- close to nature silviculture,
- old-growth forests,
- disturbance ecology,
- forest ethic,
- systemic silviculture
Copyright (c) 2024 Susanna Nocentini
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
Abstract
In the last years there has been a growing attention towards the need for a more “natural” approach in forest management. The call for a close to nature forest management is certainly not new. The aim of this review is to analyze how the concept of “nature” has evolved in forest management and discuss if “naturalness” is still a viable reference for managing forests ecosystems considering the multiple values which are today attributed to forests.
Over a century ago foresters turned to “virgin forests” as inspiration for modeling silviculture. This approach refers to the classic paradigm in ecology, which for a long time was the “balance of nature paradigm”. More recently “disturbance ecology” has recognized the role of natural disturbances in determining the structure, biodiversity and functioning of forest ecosystems, and has inspired forest management approaches based on the natural disturbance regime.
The search for a “natural” reference model underlies the belief that through management it is possible to forecast with sufficient accuracy the reaction of the ecosystem and thus bring it to a composition, structure and functioning considered more natural. Both these approaches are based on a deterministic and anthropocentric view of nature, which today is by many considered unable to capture the complexity and unpredictability of forest ecosystems in a changing world.
A truly “close to nature” management should instead consider human action as part of the system, recognizing the needs of society, but without forcing the forest in a predefined model, considered more “natural” and aimed at providing specific products or “services”. In this sense a systemic, adaptive management approach, coherent with a forest ethic, is needed.
References
- WRG, 2009 - 2030 Water resources group. Annual report 2009.
- Alkama R., Cescatti, A., 2016 - Biophysical climate impacts of recent changes in global forest cover. Science 351: 600-604; https://doi.org/10.1126/science.aac8083
- Asner G.P., Scurlock J.M.O., Hicke J.A., 2003 - Global synthesis of leaf area index observations: implications for ecological and remote sensing studies. Global Ecology &Biogeography, 12: 191-205.
- Bastin J.-F., Finegold Y., Garcia C., Mollicone D., Rezende M., Routh D., Zohner C.M., Crowther T.W., 2019 - The global tree restoration potential. Science, 365 (6448), 76-79; https://doi.org/10.1126/science.aax0848
- Baudena M., Tuinenburg O.A., Ferdinand P.A., Staal A., 2021 - Effects of land-use change in the Amazon on precipitation are likely underestimated. Global Change Biology, 27: 5580-5587; https://doi.org/10.1111/gcb.15810
- Bottacci A., 2020 - Lo spazio e il tempo per le foreste resilienti. L’Italia Forestale e Montana / Italian Journal of Forest and Mountain Environments, 75 (2): 1-12; https://doi.org/10.4129/ifm.2020.2.02
- Boulton C.A., Lenton T.M., Boeri N., 2022 - Pronounced loss of Amazon rainforest resilience since the early 2000s. Nature climate change, 12 (march 2022): 271-278; https://doi.org/10.1038/s41558-022-01287-8
- Bouman M., 2023 - Investigating the biotic pump theory. A study on condensation-induced atmospheric dynamics. MSc thesis, Meteorology and Air Quality (MAQ) Group, Wageningen University: 1-31; https://edepot.wur.nl/634471
- Bréda N.J.J., 2008 - Leaf Area Index. In: Encyclopedia of Ecology, p. 2148-2154; https://doi.org/10.1016/B978-008045405-4.00849-1
- Brunet Y., 2020 - Turbulent flow in plant canopies: historical perspective and overview. Boundary-Layer Meteorology, 177: 315-364; https://doi.org/10.1007/s10546-020-00560-7
- Calder I.R., 2005 - Blue Revolution: Integrated Land and Water Resources Management. Routledge; 2. ed., 376 p.
- Cantin G., Verdière N., 2020 - Networks of forest ecosystems: Mathematical modeling of their biotic pump mechanism and resilience to certain patch deforestation. Ecol. Complex., 43: 100850; https://doi.org/10.1016/j.ecocom.2020.100850
- Cazzolla Gatti R., Velichevskaya A., Dudko A., Fabbio L., Notarnicola C., 2021 - The smokescreen of Russian protected areas. Science of the total environment, vol. 785; https://doi.org/10.1016/j.scitotenv.2021.147372
- Ceccarelli T., Giordano F., Luise A., Perini L., Salvati L., 2006 - La vulnerabilità alla desertificazione in Italia: raccolta, analisi, confronto e verifica delle procedure cartografiche di mappatura e degli indicatori a scala nazionale e locale. APAT - CRA UCEA Manuali e linee guida, 40; 128 p.
- Centritto M., 2015 - Siccità, degrado del territorio e desertificazione nel Mondo. CNR, Intervento del 26/08/2015, EXPO2015, Padiglione Italia, Milano.
- Cimini A., De Fioravante P., Dichicco P., Munafò M. (a cura di), 2023 - Atlante nazionale del consumo di suolo. Edizione 2023. ISPRA, p. 1-47.
- Corona P., Ferrari B., Marchetti M., Barbati A., 2006 - Risorse forestali e rischio di desertificazione in Italia. Standard programmatici di gestione. Università della Tuscia, Accademia Italiana di Scienze Forestali, Comitato Nazionale per la Lotta alla Siccità e alla Desertificazione, Roma.
- Damiani G., 2024 - Per fare l’acqua ci vuole l’albero. Simbiosi, n. 9: 75-87.
- Eberhardt U., Springgay E., Gutierrez V., Casallas-Ramirez S., Cohen R., 2019 - Advancing the forest and water nexus - A capacity development facilitation guide. Rome, FAO, 140 p.; https://doi.org/10.4060/ca6483en
- ECA, 2018 - Combating desertification in the EU: a growing threat in need of more action. Special report n. 33, European Court of Auditors, Luxembourg. Available from: https://www.eca.europa.eu/Lists/ECADocuments/SR18_33/SR_DESERTIFICATION_EN.pdf
- Ellison D., Morris C.E., Locatelli B., Sheil D., Cohen J., Murdiyarso D. et al., 2017 - Trees, forests and water: Cool insights for a hot world. Global environmental change, 43: 51-61.
- FAO, 2020 - Global Forest Resources Assessment 2020: Main report. Rome, Italy, 184 p.; https://doi.org/10.4060/ca9825en
- FAO, 2022 - The State of the World’s Forests 2022. Forest pathways for green recovery and building inclusive, resilient and sustainable economies. Rome, FAO; https://doi.org/10.4060/cb9360en
- FAO, IUFRO, USDA, 2021 - A guide to forest-water management. FAO Forestry Paper No. 185. Rome; https://doi.org/10.4060/cb6473en
- Friedlingstein P., Allen M., Canadell J.G., Peters G.P., Seneviratne S.I., 2019 - Comment on “The global tree restoration potential”. Science, 366 (6463); https://doi.org/10.1126/science.aay8060
- Fritschen L.J., Simpson J.R., 1985 - Evapotranspiration from forests: measurement and modeling. In: “The forest-atmosphere interaction” (Hutchison B.A, Hicks B.B eds.). Reidel Publishing Co., Boston, MS, USA, p. 293-308.
- Fu Y., Argus D.F., Freymueller J.T., Heflin M.B., 2013 - Horizontal motion in elastic response to seasonal loading of rain water in the Amazon Basin and monsoon water in Southeast Asia observed by GPS and inferred from GRACE. Advancing Earth and Space Sciences, 40 (23): 6048-6053; https://doi.org/10.1002/2013GL058093
- Ghazoul J., Sheil D., 2010 - Tropical rain forest ecology, diversity and conservation. University Press, Oxford.
- Gimeno L., Nieto R., Vȧzquez M., Lavers D.A., 2014 - Atmospheric rivers: a mini-review. Frontiers in earth science, vol. 2, art. 2: 1-6; https://doi.org/10.3389/feart.2014.00002
- Gimeno L., Stohl A., Trigo R.M., Dominguez F., Yoshimura K., Yu L. et al., 2012 - Oceanic and terrestrial sources of continental precipitation. Rev. Geophys., 50, RG4003; https://doi.org/10.1029/2012RG000389.
- GISTEMP Team, 2023 - GISS Surface Temperature Analysis (GISTEMP), version 4. NASA Goddard Institute for Space Studies. Dataset accessed 20YY-MM-DD at https://data.giss.nasa.gov/gistemp/
- Gorshkov V.G., Gorshkov V.V., Makarieva A.M., 2000 - Biotic regulation of environment. Key issue of global change. Springer-Praxis books in environmental science; 384 p.
- Hakimovich H.H., Alishovich K.B., 2023 - The importance of reforestation in preventing desertification. Intent Research Scientific Journal, 2.7: 23-29.
- Hallquist M., Wenger J.C., Baltensperger U., Rudich Y., Simpson D., Claeys M. et al., 2009 - The formation, properties and impact of secondary organic aerosol: current and emerging issues. Atmos. Chem. Phys., 9: 5155-5236; https://doi.org/10.5194/acp-9-5155-2009
- Hansen F.V., 1993 - Surface roughness lengths. Army Research Laboratory TR-61, 51 p.
- Hesslerová P., Pokorný J., Huryna H., Harper D., 2019 - Wetlands and forests regulate climate via evapotranspiration. In: Wetlands: Ecosystem Services, Restoration and Wise Use. Shuqing An & Jos T.A. Verhoeven Eds.; Springer Nature Switzerland AG 2019. Cham, Switzerland, p. 63-93.
- Hoekstra A.Y., Chapagain A.K., 2007 - Water footprints of nations: Water use by people as a function of their consumption pattern. In: Craswell E., Bonnell M., Bossio D., Demuth S., Van De Giesen N. (Eds.), Integrated Assessment of Water Resources and Global Change. Springer, Dordrecht; https://doi.org/10.1007/978-1-4020-5591-1_3.
- Hou Y., Wei X., Zhang M., Creed I.F., McNulty S.G., Ferraz S.F.B., 2023 - A global synthesis of hydrological sensitivities to deforestation and forestation. Forest Ecology and Management, 529 12071; https://doi.org/10.1016/j.foreco.2022.120718
- Huang J., Zhang G., Zhang Y., Guan X., Wei Y., Guo R., 2020 - Global desertification vulnerability to climate change and human activities. Land degradation & Development, 31 (11): 1380-1391; https://doi.org/10.1002/ldr.3556
- Iovino F., Borghetti M., Veltri A., 2009 - Foreste e ciclo dell’acqua. Forest@, 6: 256-273.
- IPCC, 2021 - Summary for Policymakers. In: V. Masson-Delmotte et. al. (Eds.), - Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change.
- IPCC, 2022 - Summary for Policymakers. In: Shukla P. et al. (Eds.) - Climate Change 2022: Mitigation of Climate Change. Contribution of Working Group III to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge, UK and New York, NY, USA; https://doi.org/10.1017/9781009157926.001
- Jaramillo A., Mesa J., Raymond D.J., 2018 - Is condensation-induced atmospheric dynamics a new theory of the origin of the winds? J. Atmos. Sci., 75: 3305-3312; https://doi.org/10.1175/JAS-D-17-0293.1
- Jasechko S., Sharp Z., Gibson J.J., Birks J.S., Yi Y., Fawcett P.J., 2013 - Terrestrial water fluxes dominated by transpiration. Nature, 496: 347-350; https://doi.org/10.1038/nature11983
- Kaczan D.J., Orgill-Meyer J., 2020 - The impact of climate change on migration: a synthesis of recent empirical insights. Climatic Change, 158: 281-300; https://doi.org/10.1007/s10584-019-02560-0
- Kelley C.P., Mohtadi S., Cane M.A., Seager R., Kushnir Y., 2015 - Climate change in the Fertile Crescent and implications of the recent Syrian drought. PNAS, 112 (11): 3241-3246; https://doi.org/10.1073/pnas.1421533112
- Kravčík M., Pokorný J., Kohutiar J., Kováč M., Tóth E., 2007 - Water for the Recovery of the Climate - A New Water Paradigm. Krupa Print, Žilina.
- Kravčík M., Pokorný J., Kohutiar J., Kováč M., Tóth E., 2021 - L’acqua per il recupero del clima. Un nuovo paradigma dell’acqua. Biologia Ambientale, vol. 35, 1° suppl., 123 p.; https://doi.org/10.30463/ao211.008
- Makarieva A.M., Nefiodov A.V., Nobre A.D., Sheil D., Nobre P., Pokorný J., Hesslerová P., Li B.L., 2022 - Vegetation impact on atmospheric moisture transport under increasing land-ocean temperature contrasts. Heliyon, 8, e11173: 1-12; https://doi.org/10.1016/j.heliyon.2022.e11173
- Makarieva A.M., Gorshkov V.G., 2007 - Biotic pump of atmospheric moisture as driver of the hydrological cycle on land. Hydrol. Earth Syst. Sci., 11: 1013-1033; https://doi.org/10.5194/hess-11-1013-2007
- Makarieva A.M., Gorshkov V.G., 2009 - Condensation-induced dynamic gas fluxes in a mixture of condensable and non-condensable gases. Physics Letters A, 373 (32): 2801-2804; https://doi.org/10.1016/j.physleta.2009.05.057
- Makarieva A.M., Gorshkov V.G., 2010 - The biotic pump: condensation, atmospheric dynamics and climate. International Journal of Water, 5 (4): 365-385; https://doi.org/10.1504/IJW.2010.038729
- Makarieva A.M., Gorshkov V.G., Li B.L., 2006 - Conservation of water cycle on land via restoration of natural closed-canopy forests: implications for regional landscape planning. Ecol. Res., 21: 897-906; https://doi.org/10.1007/s11284-006-0036-6
- Makarieva A.M., Gorshkov V.G., Li B.L., 2009 - Precipitation on land versus distance from the ocean: Evidence for a forest pump of atmospheric moisture. Ecological Complexity, 6 (3): 302-307; https://doi.org/10.1016/j.ecocom.2008.11.004
- Makarieva A.M., Gorshkov V.G., Li B.L., 2013b - Revisiting forest impact on atmospheric water vapor transport and precipitation. Theor. Appl. Climatol., 111: 79-96; https://doi.org/10.1007/s00704-012-0643-9
- Makarieva A.M., Gorshkov V.G., Nobre A.D., Nefiodov A.V., Sheil D., Nobre P., Li B.-L., 2019 - Commenti su “La dinamica atmosferica indotta dalla condensazione è una nuova teoria dell’origine dei venti?”. Giornale delle scienze atmosferiche, 76: 2181-2185; https://doi.org/10.1175/JAS-D-18- 0358.1
- Makarieva A.M., Gorshkov V.G., Sheil D., Nobre A.D., Bunyard P., Li B.-L., 2014 - Why does air passage over forest yield more rain? Examining the coupling between rainfall, pressure, and atmospheric moisture content. Journal of Hydrometeorology, 15 (1): 411-426; https://doi.org/10.1175/JHM-D-12-0190.1
- Makarieva A.M., Gorshkov V.G., Sheil D., Nobre A.D., Li B.-L., 2013a - Where do winds come from? A new theory on how water vapor condensation influences atmospheric pressure and dynamics. Atmospheric Chemistry and Physics, 13 (2): 1039-1056; https://doi.org/10.5194/acp-13-1039-2013
- Makarieva A.M., Nefiodov A.V., Li B.-L., 2020 - Life’s Energy and Information: Contrasting Evolution of Volume- versus Surface-Specific Rates of Energy Consumption. Entropy, 22 (9): 1025; https://doi.org/10.3390/e22091025
- Makarieva A.M., Nefiodov A.V., Nobre A.D., Baudena M., Bardi U., Sheil D., Saleska S.R., Molina R.D., Rammig A., 2023 - The role of ecosystem transpiration in creating alternate moisture regimes by influencing atmospheric moisture convergence. Global Change Biology, 29 (9): 2536-2556; https://doi.org/10.1111/gcb.16644
- Marengo J.A., Soares, W.R., Saulo C., Nicolini, M., 2004 - Climatology of the low-level jet East of the Andes derived from NCEP-NCAR reanalyses: Characteristics and temporal variability. Journal of Climate, 17 (12): 2261-2280.
- Marengo J.A., Douglas M.W., Silva Dias P.L., 2002 - The South American low-level jet east of the Andes during the 1999 LBA-TRMM and LBA-WET AMC campaign. Journal of Geophysical Research, 107, D20, 8079; https://doi.org/10.1029/2001JD001188
- MEA., 2005 - A Report of the Millennium Ecosystem Assessment. Ecosystems and Human Well-Being. Island Press, Washington DC.
- Mirabel A., Girardin M.P., Metsaranta J., Way D., Reich P.B., 2023 - Increasing atmospheric dryness reduces boreal forest tree growth. Nat. Commun., 14, 6901; https://doi.org/10.1038/s41467-023-42466-1
- Munafò M. (a cura di), 2023 - Consumo di suolo, dinamiche territoriali e servizi ecosistemici. Edizione 2023. Report SNPA 37/23.
- Newell R.E., Newell N.E., Zhu Y., Scott C., 1992 - Tropospheric rivers? A pilot study. Geographycal Research Letters, 19 (24): 2401-2404; https:// doi.org/10.1029/92GL02916
- Padròn R.S., Gudmundsson L., Decharme B., Ducharne A., Lawrence D.M., Mao J., Peano D., Krinner G., Kim H., Serevinatne S.I, 2020 - Observed changes in dry-season water availability attributed to human-induced climate change. Nature Geoscience, 13: 477-481.
- Papa Francesco, 2023 - Laudate Deum. Esortazione apostolica del 4 ottobre 2023.
- Pearce F., 2020 - Water makers. Science, 368 (6497): 1302-1305; https://doi.org/10.1126/science.368.6497.1302
- Prăvălie R., Patriche C., Bandoc G., 2017 - Quantification of land degradation sensitivity areas in Southern and Central Southeastern Europe. New results based on improving DISMED methodology with new climate data. Catena, 158: 309-320; https://doi.org/10.1016/j.catena.2017.07.006
- Prevedello J.A., Winck G.R., Weber M.M., Nichols E., Sinervo B., 2019 - Impacts of forestation and deforestation on local temperature across the globe. PLoS ONE, 14 (3): e0213368; https://doi.org/10.1371/journal.pone.0213368
- Salati E., Vose P.B., 1984 - Amazon basin: a system in equilibrium. Science, 225 (4658): 129-138; https://doi.org/10.1126/science.225.4658.129
- Salati E., Dall’Olio A., Matsui E., Gat J.R., 1979 - Recycling of water in the Amazon Basin: An isotopic study. Water Resour. Res., 15: 1250-1258; https://doi.org/10.1029/WR015i005p01250
- Savenije H.H.G., 1995a - New definitions for moisture recycling and the relationship with land-use changes in the Sahel. Journal of Hydrology, 167 (1-4): 57-78.
- Savenije H.H.G., 1995b - Does moisture feedback affect rainfall significantly? Physics and Chemistry of the Earth, 20 (5-6): 507-513; https://doi.org/10.1016/S0079-1946(96)00014-6
- Savenije H.H.G., 1996 - The runoff coefficient as the key to moisture recycling. Journal of Hydrology, 176 (1-4): 219-225; https://doi.org/10.1016/0022-1694(95)02776-9
- Sheil D., 2018 - Forests, atmospheric water and an uncertain future: the new biology of the global water cycle. For. Ecosyst., 5, 19; https://doi.org/10.1186/s40663-018-0138-y
- Sheil D., Murdiyarso D., 2009 - How forests attract rain: an examination of a new hypothesis. BioScience, 59 (4): 341-347; https://doi.org/10.1525/bio.2009.59.4.12
- Simard S.W., Beiler K.J., Bingham M.A., Deslippe J.R., Philip L.J., Teste F.P., 2012 - Mycorrhizal networks: mechanisms, ecology and modelling. Fungal Biology Reviews, 26 (1): 39-60.
- Simard S.W., Durall D.M., 2004 - Mycorrhizal networks: a review of their extent, function, and importance. Canadian Journal of Botany, 82 (8); https://doi.org/10.1139/b04-116
- Smith, C., Baker, J.C.A., Spracklen, D.V., 2023 - Tropical deforestation causes large reductions in observed precipitation. Nature, 615: 270-275; https://doi.org/10.1038/s41586-022-05690-1
- Spracklen D.V., Arnold S.R., Taylor C., 2012 - Observations of increased tropical rainfall preceded by air passage over forests. Nature, 489: 282-285; https://doi.org/10.1038/nature11390
- Spracklen D.V., Garcia-Carreras L., 2015 - The impact of Amazonian deforestation on Amazon basin rainfall. Geophys. Res. Lett., 4; https://doi.org/10.1002/2015GL066063
- Tao F., Chen Y., Fu B., 2020 - Impacts of climate and vegetation leaf area index changes on global terrestrial water storage from 2002 to 2016. Science of the Total Environment, vol. 724; https://doi.org/10.1016/j.scitotenv.2020.138298
- van der Ent R.J., Wang-Erlandsson L., Keys P.W., Savenije H.H.G., 2014 - Contrasting roles of interception and transpiration in the hydrological cycle - Part 2: Moisture recycling. Earth Syst. Dynam., 5: 471-489; https://doi.org/10.5194/esd-5-471-2014, 2014
- van der Ent R.J., Savenije H.H.G., Schaefli B., Steele-Dunne S.C., 2010 - Origin and fate of atmospheric moisture over continents. Water Resour. Res., 46 (9); https://doi.org/10.1029/2010WR009127
- Vinod N., Slot M., McGregor I., Ordway E.M., Smith M.N., Taylor T.C. et al., 2022 - Thermal sensitivity across forest vertical profiles: patterns, mechanisms, and ecological implications. New Phytologist, 237 (1); https://doi.org/10.1111/nph.18539
- Wei X., Li Q., Zhang M., Giles-Hansen K., Liu W., Fan H., Wang Y., Zhou G., Piao S., Liu S., 2017 - Vegetation cover - another dominant factor in determining global water resources in forested regions. Glob Chang Biol., 24 (2): 786-795; https://doi.org/10.1111/gcb.13983
- Wilson E.O., 2016 - Half-Earth. Our Planet’s Fight for Life. Liveright Publishing Corporation, a division of W.W. Norton & Company, New York, N.Y.
- Worden S., Fu R., Chakraborty S., Liu J., Worden J., 2021 - Where does moisture come from over the Congo basin? Journal of Geophysical Research: Biogesciences, 126 (8); https://doi.org/10.1029/2020JG006024
- Xue Y., Shukla J., 1993 - The influence of land surface properties on Sahel climate: Part 1: Desertification. J. Climate, 6: 2232-2245.
- Xue Y., Shukla J., 1996 - The influence of land surface properties on Sahel climate. Part 2: Afforestation. J. Climate, 9 (12): 3260-3275; https://doi.org/10.1175/1520-0442(1996)009<3260:TIOLSP> 2.0.CO;2
- Yuan W., Zheng Y., Piao S., Ciais P., Lombardozzi D., Wang Y. et al., 2019 - Increased atmospheric vapor pressure deficit reduces global vegetation growth. Sciences Advances, 5 (8): 1-12; https://doi.org/10.1126/sciadv.aax1396
- Zhao D.F., Bucholz A., Tillmann R., Kleist E., Wu C., Rubach F. et al., 2017 - Environmental conditions regulate the impact of plants on cloud formation. Nature Communications, 8 article n. 14067; https://doi.org/10.1038/ncomms14067
- Zhou Y., Sun X., Zhu Z., Zhang R., Tian J., Liu Y., Yuan G., 2006 - Surface roughness length dynamic over several different surfaces and its effects on modeling fluxes. Sci China Ser D, 49 (Suppl. 2): 262-272; https://doi.org/10.1007/s11430-006-8262-x