Vol. 78 No. 5 (2023)
Articles

Biomonitoring of edaphic microarthropods in wild fires broadleaf stands in the Montefalcone Nature Reserve

Published 2024-02-14

Keywords

  • broadleaf forests,
  • wild fires,
  • soil,
  • adaphic microarthropods,
  • environmental monitoring

Abstract

The aim of this study is to assess the impact of fire on edaphic microarthropod communities in stands of broadleaf trees with a prevalence of Quercus species affected by several fires: in 2001, in 2009, and in some areas in both years, within the Montefalcone Nature Reserve (Pisa). Soil sampling was carried out seasonally between autumn 2011 and autumn 2012 for a total of 120 samples including a nearby area where non fire has occurred since at least 40 years (control). Monitoring was carried out using the soil biological quality index (QBS-ar) and the abundances of microarthropods, which did not show clear differences between areas burned, once or twice, and the control area. Although no significant differences emerged, the study shows that some ecomorphological groups are more sensitive to the passage of fire than others. In our caase, the density of microarthropods and the biological quality of the soil did not show any particular reductions, confirming that the recovery of edaphic communities, generally, takes place within a couple of years. This highlights the important role of monitoring over time in order to provide information on the impact of fire on a forest stand and therefore on its stability after a disturbance.

References

  1. Agbeshie A.A., Abugr S., Atta-Darkwa, Awuah R., 2022 - A review of the effects of forest fire on soil properties. J. For. Res. 33, 1419–1441 (2022). https://doi.org/10.1007/s11676-022-01475-4
  2. Anderson M.J., 2001 - A new method for non-parametric multivariate analysis of variance. Austral. Ecology., 26: 32-46. https://doi.org/10.1111/j.1442-9993.2001.01070.pp.x
  3. Antunes S.C., Curado N., Castro B.B. et al., 2009 - Short-term recovery of soil functional parameters and edaphic macro-arthropod community after a forest fire. J Soils Sediments, 9: 267-278. https://doi.org/10.1007/s11368-009-0076-y
  4. Athias-Binche F., 1987 - Regeneration patterns of Mediterranean ecosystems after fire: the case of some soil arthropods: uropodid mites. Vie et Milieu, 37: 39-52.
  5. Bhadauria T., Ramakrisnan P.S., Srivastava K.N., 2000 - Diversity and distribution of endemic and exotic earthworms in natural ecosystems in the central Himalayas, India. Soil Biology and Biochemistry, 32: 2045-2054. https://doi.org/10.1016/S0038-0717(00)00106-1
  6. Blandin P., 2015 - La diversità del vivente prima e dopo la biodiversità. Rivista di estetica, 59 (2): 63-92. https://doi.org/10.4000/estetica.338
  7. Bovio G., Ascoli D., Valsecchi C., Bottero A., 2011 - Indagine sulle caratteristiche degli incendi boschivi e sulle dinamiche di risposta degli ecosistemi forestali. Gestione post-incendio in popolamenti di Fagus sylvatica L. del Piemonte. Rapporto di ricerca. Regione Piemonte. Scaricabile on line: http://www.regione.piemonte.it/montagna/pubblicazioni/pubblicazioni.htm.
  8. Broza M., Izhaki I.. 1997 - Post-fire arthropod assemblages in Mediterranean forest soils in Israel. International Journal of Wildland Fire, 7 (4): 317–325. https://doi.org/10.1071/WF9970317
  9. Brockett B.H., Biggs H.C., van Wilgen B.W., 2001 - A patch mosaic burning system for conservation areas in southern African savannas. International Journal of Wildland Fire, 10 (2): 169-183. https://doi.org/10.1071/WF01024
  10. Buddle C.M., Langor D.W., Pohl G.R., Spence J.R., 2006 - Arthropod responses to harvesting and wildfire: Implications for emulation of natural disturbance in forest management. Biological Conservation, 128 (3): 346-357. https://doi.org/10.1016/j.biocon.2005.10.002
  11. Çakır M., Akburak S., Makineci E., Bolat F., 2023 - Recovery of soil biological quality (QBS-ar) and soil microarthropod abundance following a prescribed fire in the Quercus frainetto forest. Applied Soil Ecology, 184: 104768. ISSN 0929-1393, https://doi.org/10.1016/j.apsoil.2022.104768
  12. Clark K.R., 1993 - Non-parametric multivariate analysis of changes in community structure. Australian Journal of Ecology, 18:117-143. https://doi.org/10.1111/j.1442-9993.1993.tb00438.x
  13. Conedera M., Moretti M., 2005 - Gli incendi di bosco: le conseguenze sull'ecosistema. Dati statistiche e società: trimestrale dell'Ufficio di statistica del Cantone Ticino, 1: 14-24.
  14. Davis J.C., 1986 - Statistics and Data Analysis in Geology. John Wiley and Sons, New York.
  15. Efron B., 1979 - Bootstrap methods: Another look at jackknife. Ann. Stat., 7: 1-26. https://doi.org/10.1214/aos/1176344552
  16. Franklin J., Spears-Lebrun L.A., Deutschman D.H., Marsden K., 2006 – Impact of a high–intensity fire on mixed evergreen and mixed conifer forests in the Peninsular Ranges of southern California, USA. Forest Ecology and Management, 235: 18-29. https://doi.org/10.1016/j.foreco.2006.07.023
  17. Giuntini F., De Meo I., Graziani A., Cantiani, P., Paletto, A., 2017 - Stima del volume di legno morto in rimboschimenti di pino nero (Pinus nigra JF Arnold) in Toscana: confronto tra casi studio. Dendronatura, 1: 19-28.
  18. Hadjibiros K., 2001 - Setting priorities for wildfire suppression policy in Greece using a relation between yearly burned areas and recovery time. Global NEST Journal, 3 (1): 37-43. https://doi.org/10.30955/gnj.000141
  19. Hammer Ø., Harper D.A.T., Ryan P.D., 2001 - PAST: Palaeontological Statistics software package for education and data analysis. Palaeontologia Electronica, 4 (1): 9.
  20. Harper D.A.T., 1999 - Numerical Palaeobiology. John Wiley & Sons, Chichester.
  21. Hutchinson G.E., 1959 - Homage to a Rosalia or why are there so many kinds of animals?. Am. Natur., 93: 145-158. https://doi.org/10.1086/282070
  22. Jackson D.A., 1993 - Stopping rules in principal components analysis: a comparison of heuristical and statistical approaches. Ecology, 74: 2204-2214. https://doi.org/10.2307/1939574
  23. Keeley J.E., 2009 - Fire intensity, fire severity and burn severity: a brief review and suggested usage. International Journal of Wildland Fire, 1: 116–126. https://doi.org/10.1071/WF07049
  24. Lisa C., Paffetti D., Marchi E., Nocentini S., Travaglini D., 2022 - Use of an Eaphic Microarthropod Index for Monitoring Wildfire Impact on Soil in Mediterranean Pine Forests. Frontiers in Forests and Global Change, Vol. 5: 900247. https://doi.org/10.3389/ffgc.2022.900247
  25. Lisa, C., Paffetti, D., Nocentini, S., Marchi, E., Bottalico, F., Fiorentini, S., Travaflini D., 2015 - Impact of wildfire on the edaphic microarthropod community in a Pinus pinaster forest in central Italy. iForest. Biogeosci. For., 8: 874- 883. https://doi.org/:10.3832/ifor1404-008
  26. MacArthur R.H. 1955 - Fluctuations of animal populations and a measure of community stability. Ecology, 36: 533-536. https://doi.org/10.2307/1929601
  27. Magurran A.E., 2004 - Measuring biological diversity. Blackwell Publishing, Oxford. ISBN 0-632-05633-9.
  28. Malmström A., 2012 - Life-history traits predict recovery patterns in Collembola species after fire: a 10 years study. Applied Soil Ecology, 56: 35-42. https://doi.org/10.1016/j.apsoil.2012.02.007.
  29. Malmström A., 2008 – Temperature tolerance in soil microarthropods: simulation of forest fire heating in the laboratory. Pedobiologia, 51: 419-426. ISSN 0031-4056. https://doi.org/10.1016/j.pedobi.2008.01.001.
  30. Mantoni C, Di Musciano M, Fattorini S., 2020 - Use of microarthropods to evaluate the impact of fire on soil biological quality. J. Environ Manage., 266:110624. https://doi.org/10.1016/j.jenvman.2020.110624.
  31. Matlack G.R., 2001 - Factors determining the distribution of soil nematodes in a commercial forest landscape. Forest Ecology and Management, 146: 129-143. https://doi.org/10.1016/S0378-1127(00)00454-0
  32. Majer J.D., 1984 - Short term responses of soil and litter invertebrates to a cool autumn burn in Jarrah (Eucalyptus marginata) forest in Western Austalia. Pedobiologia, 26: 229-247. https://doi.org/10.1016/S0031-4056(23)05977-2
  33. Menta C., Conti F.D., Pinto S., Antonio Bodini A., 2018 - Soil Biological Quality index (QBS-ar): 15 years of application at global scale. Ecological Indicators, 85: 773-780NISSN 1470-160X, https://doi.org/10.1016/j.ecolind.2017.11.030.
  34. Moretti M, Duelli P, Obrist M.K., 2006 - Biodiversity and resilience of arthropods communities after fire disturbance in temperate forests. Oecologia, 149 (2): 312-327. https://doi.org/10.1007/s00442-006-0450-z
  35. Neary D.G., Klopatek C.C., Debano L.F, Ffolliott P.F., 1999 - Fire effects on belowground sustainability: a review and synthesis. Forest Ecology and Management, 122: 51-71. https://doi.org/10.1016/S0378-1127(99)00032-8
  36. Olivari S., 2004 - Morfologia, geologia e pedologia. In: La Riserva Naturale di Montefalcone: storia, ambiente e territorio (Cappelli F., Cappelli V., Fabbrizzi F., Olivari S., Piussi P., Sbragia M., Stiavelli S.). Tipografia La Grafica Pisana – Bientina (PI), p. 21-30.
  37. Parisi V., 1974 - Biologia ed ecologia del suolo. Bringheri, Torino.
  38. Parisi V., 2001 - The biological soil quality, a method based on microarthropods. Acta Naturalia, Ateneo Parmense, 37: 97-106.
  39. Parisi V., Menta C., Gardi C., Jacomini C., Mozzanica E., 2005 - Microarthropod communities as a tool to assess soil quality and biodiversity: a new approach in Italy. Agriculture, Ecosystems & Environment, 105 (1–2): 323-333. ISSN 0167-8809. https://doi.org/10.1016/j.agee.2004.02.002
  40. Raymond C.L., Peterson D.L., 2005 - Fuel treatments alter the effects of wildfire in a mixed-evergreen forest, Oregon, USA. Canadian Journal of Forest Research, 35 (12): 2981-2995. https://doi.org/10.1139/x05-206
  41. Sacchi C.F., Testard P., 1971 - Ecologie animale. Doin, Paris.
  42. Shannon C.E., 1948 - A Mathematical Theory of Communication. The Bell System Technical Journal, 27: 379-423; 623-656. https://doi.org/10.1002/j.1538-7305.1948.tb00917.x
  43. Sibilio G., Cascone C., Taddei A., Taddei R., 2002 - Distribuzione degli incendi in Campania e loro relazioni con le infrastrutture antropiche e le coperture forestali. In: Proceedings of the XII Congresso Nazionale della Società Italiana di Ecologia - S.It.E – Urbino, Atti n. 26, 16-18 settembre 2002, La Complessità in Ecologia, p. 95-113.
  44. Simpson E.H., 1949 - Measurement of Diversity. Nature, 163: 688. https://doi.org/10.1038/163688a0
  45. Solascasas P., Azcárate F.M., Hevia V., 2022 - Edaphic arthropods as indicators of the ecological condition of temperate grassland ecosystems: A systematic review. Ecological Indicators, Volume 142, 109277. ISSN 1470-160X, https://doi.org/10.1016/j.ecolind.2022.109277.
  46. Thompson M.P., Calkin D.E., 2011 - Uncertainty and risk in wildland fire management: A review. Journal of Environmental Management, 92 (8); 1895-1909, ISSN 0301-4797. https://doi.org/10.1016/j.jenvman.2011.03.015
  47. Travaglini D., Bottalico F., Fiorentini S., Lisa C., Marchi E., Mottola S., Neri F., Nocentini S., Puletti N., 2011 - I boschi delle Cerbaie - Gestione, conservazione e uso sostenibile. Pacini Editore, Pisa. ISBN978-88-6315-297-5.
  48. Yang X., Liu R.T., Shao M.A., Wei X.R., Li T.C., Chen M.Y., Li Z.Y., Dai Y.C, Gan M., 2022 - Short-term effects of wildfire on soil arthropods in a semi-arid grassland on the Loess Plateau. Front Microbiol., 21: 13:989351. https://doi.org/10.3389/fmicb.2022.989351.
  49. WWF, 2021 – Mediterraneo in Fiamme Report sul problema degli incendi nell’area mediterranea.- https://www.wwf.it/cosa-facciamo/pubblicazioni/mediterraneo-in-fiamme/