Vol. 78 No. 3 (2023)
Articles

Il sistema verde: soluzioni per la tutela dell’ambiente e la riduzione delle emissioni di CO2. L’esempio di una scuola esistente.

Carla Balocco
Sez. Fisica Tecnica Ambientale, Dipartimento di Architettura (DiDA), Università degli Studi di Firenze
Lorenzo Leoncini
Ingegnere libero professionista, collabora con la Sezione di Fisica Tecnica Ambientale di Architettura, Università degli Studi di Firenze.

Published 2023-07-10

Keywords

  • energy transition; school building refurbishment; green system

Abstract

Il settore dell'edilizia scolastica pubblica offre grandi opportunità di efficientamento energetico e di riduzione delle emissioni di CO2. In questa ricerca viene proposto un metodo per la valutazione energetica degli edifici scolastici. Il metodo implementa semplici informazioni di input collegate a simulazioni dinamiche. L’obiettivo principale è quello di valutare l’impatto energetico, ambientale ed economico delle diverse proposte di rigenerazione ed efficientamento, combinando l’integrazione del sistema verde. L’edificio scelto come caso studio, che presenta caratteristiche costruttive e termofisiche seriali e molto diffuse, consente di estendere la validità dei risultati ottenuti a casi e condizioni ambientali e contestuali simili. I risultati hanno evidenziato l'importanza di sviluppare strategie site-specific e soluzioni green energy, per adattare in modo ottimale qualsiasi intervento alle caratteristiche architettoniche, tipologiche e impiantistiche della scuola. L’esempio proposto è un caso prototipale affinché i Comuni e le Pubbliche Amministrazioni, che posseggono la maggior parte delle scuole in Italia, possano utilizzarlo come strumento di conoscenza base per progetti futuri orientati alla transizione energetica, ma anche per una formazione specifica dedicata.

References

  1. • Mørcka O.C., Paulsena A.J. 2014. Energy saving technology screening within the EU-project “School of the Future”, Energy Procedia 48, 148-1492. doi: 10.1016/j.egypro.2014.02.168
  2. • Demanuele C., Tweddell T., Davies M. 2010. Bridging the gap between predicted and actual energy performance in schools. World Renewable Energy Congress XI, 25-30 September 2010, Abu Dhabi, UAE
  3. • Österreicher D., Geissler S. 2016. Refurbishment in educational buildings – methodological approach for high performance integrated school refurbishment actions. Energy Procedia 96, 375-385. doi: 10.1016/j.egypro.2016.09.163
  4. • Zinzi, M., Pagliaro, F., Agnoli, S., Bisegna, F., Iatauro, D. 2021. On the Built-Environment Quality in Nearly Zero-Energy Renovated Schools: Assessment and Impact of Passive Strategies. Energies 14, 2799. https://doi.org/10.3390/en14102799
  5. • Zinzi M., G. Battistini, V. Ragazzini. 2015. Energy and environmental monitoring of a school building deep energy renovation in Italy. Energy Procedia 78, 3318-3323. doi: 10.1016/j.egypro.2015.11.744
  6. • Moazzen N., Karagüler M.E., Ashrafian T. 2021. Comprehensive parameters for the definition of nearly zero energy and cost optimal levels considering the life cycle energy and thermal comfort of school buildings. Energy and Buildings 253, 111487. https://doi.org/10.1016/j.enbuild.2021.111487
  7. • Shao L., Yang Z., Zhang W. 2017. The Application of Intelligent Device and Method for Detecting Dynamic and Static Human Body in Energy-Saving Control of Schools. Procedia Engineering 205, 4017–4021. doi: 10.1016/j.proeng.2017.09.871
  8. • Gerber S., Rix A.J., Booysen M.J. 2019. Combining grid-tied PV and intelligent water heater control to reduce the energy costs at schools in South Africa. Energy for Sustainable Development 50, 117-125. https://doi.org/10.1016/j.esd.2019.03.004
  9. • Balocco C., Leoncini L. 2022. A Study on Retrofitting Proposals for an Historic School Building in the Energy Transition Perspective. Int. Journal of Heat and Technology, doi:10.18280/ijht.400406
  10. • Balocco C., Leoncini L. 2020. Energy Cost for Effective Ventilation and Air Quality for Healthy Buildings: Plant Proposals for a Historic Building School Reopening in the Covid-19 Era. Sustainability Int Journal, 12. doi:10.3390/su12208737
  11. • Tsikra P., Andreou E. 2017. Investigation of the Energy Saving Potential in Existing School Buildings in Greece. The role of Shading and Daylight Strategies in Visual Comfort and Energy Saving. Procedia Environmental Sciences 38, 204-211. doi: 10.1016/j.proenv.2017.03.107
  12. • Bakmohammadi P., Noorzai E. 2020. Optimization of the design of the primary school classrooms in terms of energy and daylight performance considering occupants’ thermal and visual comfort. Energy Reports 6, 1590-1607. https://doi.org/10.1016/j.egyr.2020.06.008
  13. • Cantón M.A., Ganem C., Barea G., Llano J.F. 2014. Courtyards as a passive strategy in semi dry areas. Assessment of summer energy and thermal conditions in a refurbished school building. Renewable Energy 69, 437-446. http://dx.doi.org/10.1016/j.renene.2014.03.065
  14. • Yunyang Ye,Yan Chen, Jian Zhang, Zhihong Pang, Zheng O’Neill, Bing Dong, Hwakong Cheng. 2021. Energy-saving potential evaluation for primary schools with occupant-centric controls. Applied Energy 293, 11685. https://doi.org/10.1016/j.apenergy.2021.116854
  15. • Wachenfeldt B.J., Mysen M., Schild P.G. 2007. Air flow rates and energy saving potential in schools with demand-controlled displacement ventilation. Energy and Buildings 39, 1073-1079. doi:10.1016/j.enbuild.2006.10.018
  16. • Barrett P., Treves A., Shmis T., Ambasz D. Ustinova M. 2019. The Impact of School Infrastructure on Learning: A Synthesis of the Evidence, International Development in Focus, World Bank, Washington/PRIN
  17. • Habibi S., Valladares O.P., Pena˜ D. 2020. New sustainability assessment model for Intelligent Façade Layers when applied to refurbish school buildings skins. Sustainable Energy Technologies and Assessments 42,100839. https://doi.org/10.1016/j.seta.2020.100839
  18. • Ciancio O., Nocentini S. 1996. Il bosco e l’uomo: l’evoluzione del pensiero forestale dall’umanesimo moderno alla cultura della complessità. La selvicoltura sistemica e la gestione su basi naturali. Firenze, Accademia Italiana di Scienze Forestali.
  19. • Ciancio O. 1994. I diritti del bosco. L’Italia Forestale e Montana, 49, 5.
  20. • ISTAT National Institute of Statistics. 2011. 15th General Census of Population and Housing.
  21. • UNI 10351-2021, Building materials – Thermo-hygrometric properties - Procedure for choosing design values
  22. • UNI EN ISO 10456-2008, Building materials and products - Hygrometric properties - Tabulated design values and procedures for determining the declared and design thermal values
  23. • UNI EN ISO 52016-1:2018 Energy performance of buildings - Energy demands for heating and cooling, internal temperatures and sensible and latent heat loads - Part 1: Calculation procedures
  24. • UNI 10339:1995 Aeraulic systems for well-being. General information, classification and requirements. Rules for the request for quotation, the offer, the order and the delivery.
  25. • UNI EN 16798-3:2018 Prestazione energetica degli edifici - Ventilazione per gli edifici - Parte 3: Per gli edifici non residenziali - Requisiti prestazionali per i sistemi di ventilazione e di condizionamento degli ambienti (Moduli M5-1, M5-4)
  26. • ASHRAE April 2020, Issues and Statements on Relationship Between COVID-19 and HVAC in Buildings. Available online: https://www.ashrae.org/about/news/2020/ashrae-issues statements-on-relationship-between-covid-19-and-hvac in-buildings
  27. • UNI/TS 11300-1:2014 Energy performance of buildings - Part 1: Determination of the building's thermal energy demand for summer and winter air conditioning
  28. • UNI EN 16798-1:2019 Energy performance of buildings - Ventilation for buildings - Part 1: Indoor input parameters for the design and assessment of the energy performance of buildings with respect to indoor air quality, thermal environment, lighting and Acoustics - Module M1-6.
  29. • UNI EN ISO 13786:2018 Thermal performance of building components - Dynamic thermal characteristics - Calculation methods
  30. • UNI 10349-1:2016 Heating and cooling of buildings - Climatic data - Part 1: Monthly averages for the evaluation of the thermal energy performance of the building and methods for distributing solar irradiance into direct and diffuse fraction and for calculating solar irradiance on an inclined surface.
  31. • UNI EN ISO 15927-4:2005 Thermo-hygrometric performance of buildings - Calculation and presentation of climate data - Part 4: Hourly data for the evaluation of the annual energy demand for heating and cooling.
  32. • UNI/TS 11300-5:2016 Energy performance of buildings - Part 5: Calculation of primary energy and the share of energy from renewable sources.
  33. • UNI EN ISO 7730-2006 Ergonomics of thermal environments - Analytical determination and interpretation of thermal comfort by calculating the PMV and PPD indices and local thermal comfort criteria
  34. • UNI EN 15459-1:2018 Energy performance of buildings - Hydronic heating and cooling systems in buildings - Part 1: Economic evaluation procedure for energy systems in buildings, Module M1-14.
  35. • Nocentini S., Salbitano F., Travaglini D. 2021. The environmental role of trees and the urban forest in Florence. Italian Academy of Forest Sciences.
  36. • Gratani L., Di Martino L., Frattaroli A.R., Bonito A. 2018. Carbon sequestration capability of Fagus sylvatica forests developing in the Majella National Park (Central Apennines, Italy). Journal of Forestry Research, 29(5). doi:10.1007/s11676-017-0575-4
  37. https://www.politec-srl.com/files/File/Carbon_footprint.pdf
  38. https://maps2.ldpgis.it/reggello/sites/reggello/files/po/allegato_b_vas.pdf
  39. • EU Council. FIT-FOR-FIT55. https://www.consilium.europa.eu/en/policies/green-deal/fit-for-55-the-eu-plan-for-a-green-transition/