Vol. 77 No. 1 (2022)
Articles

Massive windfalls boost an ongoing spruce bark beetle outbreak in the Southern Alps

Davide Nardi
DAFNAE, University of Padova, Viale dell’Università 16, 35020 Legnaro, Padova, Italy
Valerio Finozzi
Regione del Veneto, U.O. Fitosanitario, Via A. de Gasperi 1, 31100 Treviso, Italy
Andrea Battisti
DAFNAE, University of Padova, Viale dell’Università 16, 35020 Legnaro, Padova, Italy

Published 2022-03-30

Keywords

  • wind damage,
  • tree mortality,
  • Ips typographus,
  • Norway spruce,
  • Picea abies

Abstract

European coniferous forests are currently threatened by bark beetles (e.g. Ips typographus) because of an increasing incidence of triggering factors, such as drought and windstorms. Furthermore, such natural disturbances are expected to increase in terms of magnitude and frequency due to climate change, and thus interacting with each other. Here, we present a particular case study in the Southern Italian Alps (Gares, Canale d’Agordo, Belluno), in which wind disturbance interacts with an ongoing outbreak of I. typographus, probably associated with an extended drought in the previous three years. By combining remote sensing and field surveys, we spatially reconstructed the bark beetle attack in the period 2015-2021, which includes the Vaia windstorm in October 2018. Although the windstorm occurred in an expanding phase of the bark beetle outbreak, attacks on standing trees did not occur during the first year after the windstorm but were observed two years later. Our findings suggest that an overlap of a large availability of wind felled trees with an incipient outbreak of I. typographus resulted in an immediate decrease of standing trees mortality in the year following the storm. However, the fallen trees worked as a hidden sink for the beetle population, which in the following years massively attacked the standing trees that survived the storm.

References

  1. Abdullah H., Skidmore A.K., Darvishzadeh R., Heurich M., 2019 - Timing of red-edge and shortwave infrared reflectance critical for early stress detection induced by bark beetle (Ips typographus, L.) attack. Int. J. Appl. Earth Obs. Geoinf. 82, 101900. https://doi.org/10.1016/j.jag.2019.101900
  2. Baier P., Pennerstorfer J., Schopf A., 2007 - PHENIPS - A comprehensive phenology model of Ips typographus (L.) (Col., Scolytinae) as a tool for hazard rating of bark beetle infestation. For. Ecol. Manage., 249: 171-186. https://doi.org/10.1016/j.foreco.2007.05.020
  3. Beguer.a S., Vicente-Serrano S.M., 2017 - SPEI: Calculation of the Standardised Precipitation-Evapotranspiration Index. R package version 1.7. https://CRAN.R-project.org/package=SPEI.
  4. Bentz B.J., J.nsson A.M., Schroeder M., Weed A., Wilcke R.A.I., Larsson K., 2019 - Ips typographus and Dendroctonus ponderosae models project thermal suitability for intra- and inter-continental establishment in a changing climate. Front. For. Glob. Chang. 2, 1.
  5. https://doi.org/10.3389/ffgc.2019.00001
  6. Biedermann P.H.W., Müller J., Gr.goire J.-C., Gruppe A., Hagge J., Hammerbacher A., Hofstetter R.W. et al., 2019 - Bark beetle population dynamics in the anthropocene: challenges and solutions. Trends Ecol. Evol., 34: 914-924. https://doi.org/10.1016/j.tree.2019.06.002
  7. Chirici C., Giannetti G., Travaglini T., Nocentini N., Francini F., D’Amico D., Calvo et al., 2019 - Stima dei danni della tempesta “Vaia” alle foreste in Italia. For. - J. Silvic. For. Ecol. 16, 3. https://doi. org/10.3832/EFOR3070-016
  8. Conrad O., Bechtel B., Bock M., Dietrich H., Fischer E., Gerlitz L., Wehberg J., et al., 2015 - System for Automated Geoscientific Analyses (SAGA) v. 2.1.4. Geosci. Model Dev., 8: 1991-2007. https://doi.org/10.5194/GMD-8-1991-2015
  9. Eriksson M., Pouttu A., Roininen H., 2005 - The influence of windthrow area and timber characteristics on colonization of wind-felled spruces by Ips typographus (L.). For. Ecol. Manage., 216: 105-116. https://doi.org/10.1016/J.FORECO.2005.05.044
  10. Faccoli M., Bernardinelli I., 2010 - Breeding performance of the second generation in some bivoltine populations of Ips typographus (Coleoptera Curculionidae) in the south-eastern Alps. J. Pest Sci. (2004), 84: 15-23. https://doi.org/10.1007/S10340-010-0320-7
  11. Fernandez-Carrillo A., Patočk, Z., Dobrovolný L., Franco-Nieto A., Revilla-Romero B., 2020 - Monitoring bark beetle forest damage in Central Europe. A remote sensing approach validated with field data. Remote Sens. 12, 3634. https://doi.org/10.3390/rs12213634
  12. Grodzki W., 2008 - Spatio-temporal patterns of the Norway spruce decline in the Beskid Śląski and Żywiecki (Western Carpathians) in southern Poland. J. For. Sci., 53: 38-44. https://doi.org/10.17221/2155-JFS
  13. Havašová M., Ferenčík J., Jakuš R., 2017 - Interactions between windthrow, bark beetles and forest management in the Tatra national parks. For. Ecol. Manage., 391: 349-361. https://doi.org/10.1016/j.foreco.2017.01.009
  14. Hijmans R.J., 2020 - Raster: geographic data analysis and modeling. R package version 3.4-5.
  15. Hlásny T., König L., Krokene P., Lindner M., Montagné- Huck C., Müller J., Qin H., et al., 2021a Bark beetle outbreaks in Europe: state of knowledge and ways forward for management. Curr. For. Reports, 7: 138-165. https://doi.org/10.1007/s40725-021-00142-x
  16. Hlásny T., Zimová S., Merganičová K., Štěpánek P., Modlinger R., Turčáni M., 2021b - Devastating outbreak of bark beetles in the Czech Republic: drivers, impacts, and management implications. For. Ecol.Manage., 490: 119075. https://doi.org/10.1016/j.foreco.2021.119075
  17. Holuša J., Lukášová K., 2017 - Pathogen’s level and parasitism rate in Ips typographus at high population densities: importance of time. J. Appl. Entomol., 141: 768-779. https://doi.org/10.1111/JEN.12392
  18. Honkaniemi J., Ojansuu R., Kasanen R., Heliövaara K., 2018 - Interaction of disturbance agents on Norway spruce: A mechanistic model of bark beetle dynamics integrated in simulation framework WINDROT. Ecol. Modell., 388: 45-60. https://doi.org/10.1016/J.ECOLMODEL.2018.09.014
  19. Hroššo B., Mezei P., Potterf M., Majdák A., Blaženec M., Korolyova N., Jakuš R., 2020 - Drivers of spruce bark beetle (Ips typographus) infestations on downed trees after severe windthrow. Forests 11, 1290. https://doi.org/10.3390/f11121290
  20. Huo L., Persson H.J., Lindberg E., 2021 - Early detection of forest stress from European spruce bark beetle attack, and a new vegetation index: normalized distance red & SWIR (NDRS). Remote Sens. Environ. 255, 112240. https://doi.org/10.1016/J.RSE.2020.112240
  21. Jahromi Mojtaba Naghdyzadegan, Jahromi Maryam Naghdizadegan, Zolghadr-Asli B., Pourghasemi H.R., Alavipanah S.K., 2021 - Google Earth Engine and its application in forest sciences, in: Environmental Science and Engineering. Springer, p. 629-649.
  22. https://doi.org/10.1007/978-3-030-56542-8_27
  23. Jakoby O., Lischke H., Wermelinger B., 2019 - Climate change alters elevational phenology patterns of the European spruce bark beetle (Ips typographus). Glob. Chang. Biol., 25: 4048-4063. https://doi.org/10.1111/gcb.14766
  24. Jönsson A.M., Schroeder L.M., Lagergren F., Anderbrant O., Smith B., 2012 - Guess the impact of Ips typographus. An ecosystem modelling approach for simulating spruce bark beetle outbreaks. Agric. For. Meteorol., 166-167: 188-200. https://doi.org/10.1016/j.agrformet.2012.07.012
  25. Kärvemo S., Rogell B., Schroeder M., 2014 - Dynamics of spruce bark beetle infestation spots: importance of local population size and landscape characteristics after a storm disturbance. For. Ecol. Manage., 334: 232-240. https://doi.org/10.1016/j.foreco.2014.09.011
  26. Kautz M., Schopf R., Imron M.A., 2014 - Individual traits as drivers of spatial dispersal and infestation patterns in a host-bark beetle system. Ecol. Modell., 273: 264-276. https://doi.org/10.1016/J.ECOLMODEL.2013.11.022
  27. Komonen A., Schroeder L.M., Weslien J., 2011 - Ips typographus population development after a severe MASSIVE WINDFALLS BOOST AN ONGOING SPRUCE BARK BEETLE OUTBREAK 33 storm in a nature reserve in southern Sweden. J. Appl. Entomol., 135: 132-141. https://doi.org/10.1111/J.1439-0418.2010.01520.X
  28. Lastovicka J., Svec P., Paluba D., Kobliuk N., Svoboda J., Hladky R., Stych P., 2020 - Sentinel-2 data in an evaluation of the impact of the disturbances on forest vegetation. Remote Sens. 12, 1914. https://doi.org/10.3390/rs12121914
  29. Louis M., Dohet L., Grégoire J.C., 2016 - Fallen trees’ last stand against bark beetles. For. Ecol. Manage., 359: 44-50. https://doi.org/10.1016/J.FORECO.2015.09.046
  30. Marini L., Lindelöw Å., Jönsson A.M., Wulff S., Schroeder L.M., 2013 - Population dynamics of the spruce bark beetle: a long-term study. Oikos, 122: 1768-1776.
  31. https://doi.org/10.1111/J.1600-0706.2013.00431.X
  32. Marini L., Økland B., Jönsson A.M., Bentz B., Carroll A., Forster B., Grégoire J.-C., et al., 2017 - Climate drivers of bark beetle outbreak dynamics in Norway spruce forests. Ecography (Cop.), 40: 1426-1435. https://doi.org/10.1111/ecog.02769
  33. Matthews B., Netherer S., Katzensteiner K., Pennerstorfer J., Blackwell E., Henschke P., Hietz P., et al., 2018 - Transpiration deficits increase host susceptibility to bark beetle attack: experimental observations and practical outcomes for Ips typographus hazard assessment.
  34. Agric. For. Meteorol., 263: 69-89. https://doi.org/10.1016/j.agrformet.2018.08.004
  35. Meddens A.J.H., Hicke J.A., Vierling L.A., Hudak A.T., 2013 - Evaluating methods to detect bark beetle-caused tree mortality using single-date and multi-date Landsat imagery. Remote Sens. Environ., 132: 49-58. https://doi.org/10.1016/J.RSE.2013.01.002
  36. Meier F., Gall R., Forster B., 2003 - Ursachen und Verlauf der Buchdrucker-Epidemien (Ips typographus L.) in der Schweiz von 1984 bis 1999 = Causes and progress of the eight-toothed spruce bark beetle epidemics (Ips typographus) in Switzerland from 1984 to 1999.
  37. Schweizerische Zeitschrift fur Forstwes., 154: 437-441. https://doi.org/10.3188/szf.2003.0437
  38. Mezei P., Grodzki W., Blaženec M., Škvarenina J., Brandysova V., Jakuš R., 2014 - Host and site factors affecting tree mortality caused by the spruce bark beetle (Ips typographus) in mountainous conditions. For. Ecol. Manage., 331: 196-207. https://doi.org/10.1016/j.foreco.2014.07.031
  39. Mezei P., Jakuš R., Pennerstorfer J., Havašová M., Škvarenina J., Ferenčík J., Slivinský J., et al., 2017 - Storms, temperature maxima and the Eurasian spruce bark beetle Ips typographus - An infernal trio in Norway spruce forests of the Central European High Tatra Mountains. Agric. For. Meteorol., 242: 85-95. https://doi.org/10.1016/j.agrformet.2017.04.004
  40. Netherer S., Kandasamy D., Jirosová A., Kalinová B., Schebeck M., Schlyter F., 2021 - Interactions among Norway spruce, the bark beetle Ips typographus and its fungal symbionts in times of drought. J. Pest Sci. (2004), 94: 591-614. https://doi.org/10.1007/s10340-021-01341-y
  41. Netherer S., Matthews B., Katzensteiner K., Blackwell E., Henschke P., Hietz P., Pennerstorfer J.,
  42. et al., 2015 - Do water-limiting conditions predispose Norway spruce to bark beetle attack? New Phytol., 205: 1128-1141. https://doi.org/10.1111/NPH.13166
  43. Netherer S., Panassiti B., Pennerstorfer J., Matthews B., 2019 - Acute drought is an important driver of bark beetle infestation in Austrian Norway spruce stands. Front. For. Glob. Chang. 2, 39. https://doi.org/10.3389/ffgc.2019.00039
  44. Økland B., Netherer S., Marini L., 2015 - The Eurasian spruce bark beetle: the role of climate., in: ClimateChange and Insect Pests. CABI, Wallingford, p. 202-219. https://doi.org/10.1079/9781780643786.0202
  45. Økland B., Nikolov C., Krokene P., Vakula J., 2016 - Transition from windfall- to patch-driven outbreak dynamics of the spruce bark beetle Ips typographus. For. Ecol. Manage., 363: 63-73. https://doi.org/10.1016/j.foreco.2015.12.007
  46. Pebesma E., 2018 - Simple features for R: standardized support for spatial vector data. R J. 10, 439. https://doi.org/10.32614/RJ-2018-009
  47. Potterf M., Bone C., 2017 - Simulating bark beetle population dynamics in response to windthrow events. Ecol. Complex., 32: 21-30. https://doi.org/10.1016/j.ecocom.2017.08.003
  48. QGIS.org, 2021 - QGIS Geographic Information System. QGIS Association.
  49. R Core Team, 2020 - R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. https://www.R-project.org/.
  50. Rogerson P.A., 2002 - Change detection thresholds for remotely sensed images. J. Geogr. Syst., 4: 85-97. https://doi.org/10.1007/s101090100076
  51. Romashkin I., Neuvonen S., Tikkanen O.-P., 2020 - Northward shift in temperature sum isoclines may favour Ips typographus outbreaks in European Russia. Agric. For. Entomol., 22: 238-249. https://doi.org/10.1111/AFE.12377
  52. Seidl R., Rammer W., 2017 - Climate change amplifies the interactions between wind and bark beetle disturbances in forest landscapes. Landsc. Ecol., 32: 1485-1498. https://doi.org/10.1007/s10980-016-0396-4
  53. Seidl R., Thom D., Kautz M., Martin-Benito D., Peltoniemi M., Vacchiano G., Wild J., et al., 2017 -
  54. Forest disturbances under climate change. Nat. Clim. Chang. https://doi.org/10.1038/nclimate3303
  55. Senf C., Seidl R., 2018 - Natural disturbances are spatially diverse but temporally synchronized across temperate forest landscapes in Europe. Glob. Chang. Biol., 24: 1201-1211. https://doi.org/10.1111/gcb.13897
  56. Senf C., Seidl R., Hostert P., 2017 - Remote sensing of forest insect disturbances: current state and future directions. Int. J. Appl. Earth Obs. Geoinf., 60: 49-60. https://doi.org/10.1016/j.jag.2017.04.004
  57. Sohl T.L., 1999 - Change analysis in the United Arab Emirates: An investigation of techniques. Photogramm. Eng. Remote Sensing, 65: 475-484. Stadelmann G., Bugmann H., Wermelinger
  58. B., Bigler C., 2014 - Spatial interactions between storm damage and subsequent infestations by the European spruce bark beetle. For. Ecol. Manage., 318: 167-174.
  59. https://doi.org/10.1016/j.foreco.2014.01.022
  60. Temperli C., Bugmann H., Elkin C., 2013 - Crossscale interactions among bark beetles, climate change, and wind disturbances: a landscape modeling approach. Ecol. Monogr., 83: 383-402. https://doi.org/10.1890/12-1503.1
  61. Vicente-Serrano S.M., Beguería S., López-Moreno J.I., 2010 - A multiscalar drought index sensitive to global warming: the standardized recipitation evapotranspiration index. J. Clim., 23: 1696-1718. https://doi.org/10.1175/2009JCLI2909.1
  62. Wermelinger B., Seifert M., 1998 - Analysis of the temperature dependent development of the spruce bark beetle Ips typographus (L) (Col., Scolytidae). J. Appl. Entomol., 122: 185-191. https://doi.org/10.1111/j.1439-0418.1998.tb01482.x
  63. Wermelinger B., Seifert M., 1999 - Temperature‐dependent reproduction of the spruce bark beetle Ips typographus, and analysis of the potential population growth. Ecol. Entomol., 24: 103-110. https://doi.org/10.1046/j.1365-2311.1999.00175.x
  64. Wulder M.A., Dymond C.C., White J.C., Leckie D.G., Carroll A.L., 2006 - Surveying mountain pine
  65. beetle damage of forests: a review of remote sensing opportunities. For. Ecol. Manage., 221: 27-41. https://doi.org/10.1016/j.foreco.2005.09.021F