Vol. 77 No. 1 (2022)
Articles

Effects of atmospheric nitrogen deposition on productivity and growth allocation. First results of a long-term experiment in a pre-alpine beech forest

Dario Ravaioli
Dipartimento di Tecnologie Agro-Alimentari (DISTAL) - Università di Bologna, Via Fanin 46, I-40127, Bologna, Italy
Alessandra Teglia
Dipartimento di Tecnologie Agro-Alimentari (DISTAL) - Università di Bologna, Via Fanin 46, I-40127, Bologna, Italy
Rossella Guerrieri
Dipartimento di Tecnologie Agro-Alimentari (DISTAL) - Università di Bologna, Via Fanin 46, I-40127, Bologna, Italy
Graziella Marcolini
Dipartimento di Tecnologie Agro-Alimentari (DISTAL) - Università di Bologna, Via Fanin 46, I-40127, Bologna, Italy
Enrico Muzzi
Dipartimento di Tecnologie Agro-Alimentari (DISTAL) - Università di Bologna, Via Fanin 46, I-40127, Bologna, Italy
Federico Magnani
Dipartimento di Tecnologie Agro-Alimentari (DISTAL) - Università di Bologna, Via Fanin 46, I-40127, Bologna, Italy

Published 2022-03-30

Keywords

  • nitrogen deposition,
  • above canopy fertilization,
  • leaf biomass,
  • wood biomass

Abstract

Atmospheric nitrogen deposition is an important global change driver, potentially affecting forest health and productivity. In order to evaluate the potential effects on tree growth and above-ground biomass production in southern European conditions, a long-term manipulation experiment was carried out in a prealpine beech forest (Pian Cansiglio, BL).

Four treatments are compared: (i) control, (ii) moderate soil fertilization, (iii) high soil fertilization (iv) and moderate above canopy fertilization. Results, 7 years into the experiment, do not show any effect of soil fertilization treatments on the monitored parameters, but show instead positive effects of the canopy fertilization on the allocation of resources to the canopy and on the production of leaf biomass, with values that in 2021 exceeded those observed in the control treatment by 0.72 Mg DM ha-1. The contribution of N due to atmospheric deposition does not seem to decrease the growth of pre-alpine beech forests in the short term, but could substantially alter their ecological dynamics.

References

  1. Aber J.D., Nadelhoffer K.J., Steudler P., Melillo J.M. et al., 1989 - Nitrogen saturation in northern forest ecosystems. BioScience, 39 (6): 286-378. https://doi. org/10.2307/1311067
  2. Cecchini G., Andreetta A., Marchetto A., Carnicelli S., 2021 - Soil solution fluxes and composition trends reveal risks of nitrate leaching from forest soils of Italy.
  3. CATENA, 200: 105175. https://doi.org/10.1016/j.catena.2021.105175
  4. Dail D.B., Hollinger D.Y., Davidson E.A., Fernandez I., Sievering H.C., Scott N.A., Gaige E., 2009
  5. - Distribution of nitrogen-15 tracers applied to the canopy of a mature spruce-hemlock stand. Oecologia, Howland, Maine, USA, p. 589-599. https://doi.org/10.1007/s00442-009-1325-x
  6. de Vries W., Du E., Bahl K.B., Uebbing L.S., Dentener F., 2017 - Global-scale impact of human nitrogen fixation on greenhouse gas emissions. In Oxford Research Encyclopedia of Environmental Science. https://doi.org/10.1093/acrefore/9780199389414.013.13
  7. de Vries W., Du E., Butterbach-Bahl K., 2014 - Short and long-term impacts of nitrogen deposition on carbon sequestration by forest ecosystems. Current Opinion in Environmental Sustainability, 9: 90-104. https://doi.org/10.1016/j.cosust.2014.09.001
  8. Etzold S., Ferretti M., Reinds G.J., Solberg S., Gessler A., Waldner P., Schaub M., et al. 2020 - Nitrogen deposition is the most important environmental driver of growth of pure, even-aged and managed European forests. Forest Ecology and Management, 458: 117762. https://doi.org/10.1016/j.foreco.2019.117762
  9. Ferretti M., Marchetto A., Arisci S., Bussotti F., Calderisi M., Carnicelli S., Cecchini G. et al., 2014
  10. - On the tracks of Nitrogen deposition effects on temperate forests at their southern European range - an observational study from Italy. Global Change Biology, 20 (11): 3423-3438. https://doi.org/10.1111/gcb.12552
  11. Fleischer K., Rebel K.T., Van Der Molen M.K., Erisman J.W., Wassen M.J., Van Loon E.E., Montagnani L. et al., 2013 - The contribution of nitrogen deposition to the photosynthetic capacity of forests. Global Biogeochemical Cycles, 27 (1): 187-199. https://doi.org/10.1002/gbc.20026
  12. Galloway J.N., Townsend A.R., Erisman J.W., Bekunda M., Cai Z., Freney J.R., Martinelli L.A. et al., 2008 - Transformation of the nitrogen cycle: recent trends, questions, and potential solutions. Science, 320 (5878): 889-892. https://doi.org/10.1126/science.1136674
  13. Gentilesca T., Rita A., Brunetti M., Giammarchi F., Leonardi S., Magnani F., Noije T. Van et al., 2018 - Nitrogen deposition outweighs climatic variability in driving annual growth rate of canopy beech trees: Evidence from long-term growth reconstruction across a geographic gradient. Global change biology, 24 (7): 2898-2912. https://doi.org/10.1111/gcb.14142
  14. Griscom B.W., Adams J., Ellis P.W., Houghton R.A., Lomax G., Miteva D.A. et al., 2017 - Natural climate solutions. Proceedings of the National Academy of Sciences, 114 (44): 11645-11650. https://doi.org/10.1073/pnas.1710465114
  15. Guerrieri R., Templer P., Magnani F., 2021 - Canopy Exchange and Modification of Nitrogen Fluxes in Forest Ecosystems. Current Forestry Reports, 7 (3): 115-137. https://doi.org/10.1007/s40725-021- 00141-y
  16. Gundersen P., Emmett B.A., Kjønaas O.J., Koopmans C.J., Tietema A., 1998 - Impact of nitrogen deposition on nitrogen cycling in forests: a synthesis of NITREX data. Forest Ecology and Management, 101 (1-3): 37-55. https://doi.org/10.1016/S0378-1127(97)00124-2
  17. Högberg P., Read D.J., 2006 - Towards a more plant physiological perspective on soil ecology. Trends in Ecology & Evolution, 21 (10): 548-554. https://doi.org/10.1016/j.tree.2006.06.004
  18. INFC, 2005 - Ministero delle Politiche Agricole Alimentari e Forestali, Ispettorato Generale - Corpo Forestale dello Stato. Consiglio per la Ricerca e Sperimentazione in Agricoltura Unità di ricerca per il Monitoraggio e la Pianificazione Forestale (CRAMPF).
  19. IUSS Working Group WRB, 2015 - World Reference Base for Soil Resources 2014, update 2015
  20. International soil classification system for naming soils and creating legends for soil maps. World Soil Resources Reports No. 106. FAO, Rome.
  21. Janssens I.A., Dieleman W., Luyssaert S., Subke J.-A., Reichstein M., Ceulemans R., Ciais P. et al., 2010 - Reduction of forest soil respiration in response to nitrogen deposition. Nature Geoscience, 3 (5): 315-322. https://doi.org/10.1038/ngeo844
  22. Law B., 2013 - Nitrogen deposition and forest carbon. Nature, 496 (7445): 307-308. https://doi.org/10.1038/496307a
  23. Leonardi S., Gentilesca T., Guerrieri R., Ripullone F., Magnani F., Mencuccini M., Noije T.V., Borghetti M., 2012 - Assessing the effects of nitrogen deposition and climate on carbon isotope discrimination and intrinsic water-use efficiency of angiosperm and conifer
  24. trees under rising CO2 conditions. Global Change Biology, 18 (9): 2925-2944. https://doi.org/10.1111/j.1365-2486.2012.02757.x
  25. Liang X., Zhang T., Lu X., Ellsworth D.S., BassiriRad H., You C., Wang D. et al., 2020 - Global response patterns of plant photosynthesis to nitrogen addition: A meta-analysis. Global Change Biology, 26 (6): 3585-3600. https://doi.org/10.1111/gcb.15071
  26. Magnani F., Mencuccini M., Borghetti M., Berbigier P., Berninger F., Delzon S., Grelle A. et al., 2007 - The human footprint in the carbon cycle of temperate and boreal forests. Nature, 447 (7146): 848-850. https://doi.org/10.1038/nature05847
  27. Marchetto A., Arisci S., Tartari G., Balestrini R., Tait D., 2014 - Current state and temporal evolution of the chemical composition of atmospheric depositions in forest areas of the CONECOFOR network. Forest@ - Rivista di Selvicoltura ed Ecologia Forestale, 11 (2): 72-85. https://doi.org/10.3832/efor1003-011
  28. Nair R.K.F., Perks M.P., Weatherall A., Baggs E.M., Mencuccini M., 2016 - Does canopy nitrogen uptake enhance carbon sequestration by trees? Global Change Biology, 22 (2): 875-888. https://doi.org/10.1111/gcb.13096
  29. Ochoa-Hueso R., Munzi S., Alonso R., Arróniz-Crespo M., Avila A., Bermejo, V. et al., 2017 - Ecological impacts of atmospheric pollution and interactions with climate change in terrestrial ecosystems of the Mediterranean Basin: Current research and future directions. Environmental pollution, 227: 194-206. https://doi.org/10.1016/j.envpol.2017.04.062
  30. R Core Team, 2021 - R: A Language and Environment for Statistical Computing. https://www.rproject.org/.
  31. Richards F.J., 1959 - A flexible growth function for empirical use. Journal of Experimental Botany, 10 (2): 290-301. https://doi.org/10.1093/jxb/10.2.290
  32. Soliani L., 2005 - Manuale di Statistica per la Ricerca e la Professione. Published on the URL: http://www.dsa.unipr.it/soliani/soliani.html.
  33. Sparks J.P., 2009 - Ecological ramifications of the direct foliar uptake of nitrogen. Oecologia, 159 (1): 1-13. https://doi.org/10.1007/s00442-008-1188-6
  34. Tabacchi G., Di Cosmo L., Gasparini P., Morelli S., 2011 - Stima del volume e della fitomassa delle principali specie forestali italiane. Equazioni di previsione, tavole del volume e tavole della fitomassa arborea epigea. Consiglio per la Ricerca e la sperimentazione in
  35. Agricoltura, Unità di Ricerca per il Monitoraggio e la Pianificazione Forestale. Trento.
  36. Templer P.H., Pinder R.W., Goodale C.L., 2012 - Effects of nitrogen deposition on greenhouse-gas fluxes for forests and grasslands of North America. Frontiers in Ecology and the Environment, 10 (10): 547-553. https://doi.org/10.1890/120055